大学化学 >> 2021, Vol. 36 >> Issue (12): 2102001.doi: 10.3866/PKU.DXHX202102001
收稿日期:
2021-02-01
录用日期:
2021-03-29
发布日期:
2021-05-06
通讯作者:
卞江
E-mail:bj@pku.edu.cn
作者简介:
卞江,Email: bj@pku.edu.cn†共同第一作者
Zihang Zhang, Sizhe Li, Liyan Kan, Jun Wen, Jiang Bian()
Received:
2021-02-01
Accepted:
2021-03-29
Published:
2021-05-06
Contact:
Jiang Bian
E-mail:bj@pku.edu.cn
摘要:
有机氟化物在很多领域(尤其是药物方面)有着广泛的应用,但鉴于氟的特殊反应性,氟原子的引入一直是有机化学中的难题。而有机电化学合成作为近年来新兴的合成手段,大大拓宽了有机反应的界限,使得更多绿色简易的氟化方法被开发了出来。本文就将集中列举这些有机电化学方法氟化的实例,并探讨电化学方法对于氟化学这一领域可能的推动作用。
MSC2000:
张子杭, 李思哲, 阚立言, 温俊, 卞江. 有机氟化物的电化学合成[J]. 大学化学, 2021, 36(12): 2102001.
Zihang Zhang, Sizhe Li, Liyan Kan, Jun Wen, Jiang Bian. Electrosynthesis of Organic Fluorides[J]. University Chemistry, 2021, 36(12): 2102001.
表3
三芳胺介导二硫缩醛氧化-邻二氟化反应产率"
![]() | ||||||||
Run | Dithioacetal | Anode potential/V vs. SCE | Current consumption/electrons molecule?1 | Ar3N a | Yield/% b | |||
No. | R | R’ | ||||||
1 | 57a | Ph | Ph | 1.3 | 4 | 58a | 59a | 58 |
2 | 57b | p-FC6H4 | Ph | 1.3 | 5 | 58a | 59b | 83 |
3 | 57c | p-FC6H4 | p-FC6H4 | 1.3 | 5 | 58a | 59c | 58 |
4 | 57d | p-ClC6H4 | p-ClC6H4 | 1.5 | 5 | 58b | 59d | 74 |
5 | 57f | n-C5H11 | n-C5H11 | 1.5 | 2.5 | 58b | 59f | trace |
6 | 57e | ![]() | 1.3 | 5 | 58a | 59e | 61 | |
7 | 57e | 1.5 | 5 | 58b | 59e | 76 |
1 | KirshP. 现代有机氟化学——合成、反应、应用. 第2版 北京: 化学工业出版社, 2014, 7 |
2 | (a) Moissan, H. C. R. Hebd. Seances Acad. Sci. 1886, 102, 1534. |
(b) Moissan, H. C. R. Hebd. Seances Acad. Sci. 1886, 103, 202. | |
(c) Moissan, H. C. R. Hebd. Seances Acad. Sci. 1886, 103, 256. | |
(d) For some representative reports on fluorine and fluoride compounds, see: | |
(i) Moissan, H. Ann. Chim. Phys. 1887, 12, 472. | |
(ii) Moissan, H. Ann. Chim. Phys. 1891, 24, 224. | |
(iii) Moissan, H. Ann. Chim. Phys. 1894, 2, 66. | |
3 |
Borodine A. Ann. Chem. Pharm. 1863, 126, 58.
doi: 10.1002/jlac.18631260105 |
4 | Elliott, A. J. Chlorofluorocarbons. In Organofluorine Chemistry: Principles and Commercial Applications; Banks, R. E., Smart, B. E., Tatlow, J. C. Eds.; Plenum Press: New York, USA, 1994; pp. 145-157. |
5 | (a) Rhodes, R. The Making of the Atomic Bomb; Simon and Schuster: New York, USA, 1986. |
(b) Rhodes, R. Dark Sun: The Making of the Hydrogen Bomb; Simon and Schuster: New York, USA, 1995. | |
6 |
Simons J. H. J. Electrochem. Soc. 1949, 95, 47.
doi: 10.1149/1.2776733 |
7 |
Pearlson W. H. J. Fluorine. Chem. 1986, 32, 29.
doi: 10.1016/S0022-1139(00)80505-9 |
8 |
Fuchigami T. ; Inagi S. Acc. Chem. Res. 2020, 53, 322.
doi: 10.1021/acs.accounts.9b00520 |
9 |
Dinoiu V. ; Fukuhara T. ; Hara S. ; Yoneda N. J. Fluor. Chem. 2000, 103, 75.
doi: 10.1016/S0022-1139(99)00252-3 |
10 |
Berger M. ; Herszman J. D. ; Kurimoto Y. ; Kruijff G. H. M. ; Schuell A. ; Rufc S. ; Waldvogel S. R. Chem. Sci. 2020, 11, 6053.
doi: 10.1039/D0SC02417A |
11 |
Xiang J. ; Shang M. ; Kawamata Y. ; Lundberg H. ; Reisberg S. H. ; Chen M. ; Mykhailiuk P. ; Beutner G. ; Collins M. R. ; Davies A. ; et al Nature 2019, 573, 398.
doi: 10.1038/s41586-019-1539-y |
12 |
Fukuhara T. ; Akiyama Y. ; Yoneda N. ; Tada T. ; Hara S. Tetrahedron Lett. 2002, 43, 6583.
doi: 10.1016/S0040-4039(02)01440-5 |
13 |
Tajima T. ; Nakajima A. ; Fuchigami T. J. Org. Chem. 2006, 71, 1436.
doi: 10.1021/jo0520745 |
14 |
Hou Y. ; Higashiya S. ; Fuchigami T. J. Org. Chem. 1999, 64, 3346.
doi: 10.1021/jo981979y |
15 |
Fuchigami T. ; Inagi S. Chem. Commun. 2011, 47, 10211.
doi: 10.1039/c1cc12414e |
16 |
Baba D. ; Ishii H. ; Higashiya S. ; Fujisawa K. ; Fuchigami T. Tetrahedron 2001, 57, 9067.
doi: 10.1016/S0040-4020(01)00910-3 |
17 |
Hasegaw M. ; Ishii H. ; Fuchigami T. Green Chem. 2003, 5, 512.
doi: 10.1039/B304617F |
18 |
Cao Y. ; Suzuki K. ; Tajima T. ; Fuchigami T. Tetrahedron 2005, 61, 6854.
doi: 10.1016/j.tet.2005.04.057 |
19 |
Hasegawa M. ; Ishii H. ; Fuchigami T. Tetrahedron Lett. 2002, 43, 1503.
doi: 10.1016/S0040-4039(02)00047-3 |
20 |
Suzuki J. ; Shida N. ; Inagi S. ; Fuchigami T. Electroanalysis 2016, 28, 2797.
doi: 10.1002/elan.201600130 |
21 |
Fuchigami T. ; Tajima T. J. Fluor. Chem. 2005, 126, 181.
doi: 10.1016/j.jfluchem.2004.11.003 |
22 |
Aoyama M. ; Fukuhara T. ; Hara S. J. Org. Chem. 2008, 73, 4186.
doi: 10.1021/jo8004759 |
23 | (a) Schulz, L.; Waldvogel, S. R. Synlett 2019, 30, 275. |
(b) Bin, Y.; Inagi, S.; Fuchigami, T. Beilstein J. Org. Chem. 2015, 11, 85. | |
(c) Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigami, T. Adv. Synth. Catal. 2010, 352, 2757. | |
(d) Inagi, S.; Sawamura, T.; Fuchigami, T. Electrochem. Commun. 2008, 10, 1158. | |
24 |
Monoi M. ; Hara S. J. Fluor. Chem. 2012, 140, 28.
doi: 10.1016/j.jfluchem.2012.04.006 |
25 |
Tajima T. ; Nakajima A. ; Doi Y. ; Fuchigami T. Angew. Chem. Int. Ed. 2012, 51, 4413.
doi: 10.1002/anie.201200438 |
26 |
Sawamura T. ; Takahashi K. ; Inagi S. ; Fuchigami T. Angew. Chem. Int. Ed. 2007, 46, 3550.
doi: 10.1002/anie.200700037 |
27 | (a) Takahashi, K.; Furusawa, T.; Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigami, T. Electrochim. Acta 2012, 77, 47. |
(b) Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigama, T. Adv. Synth. Catal. 2010, 352, 2757. | |
(c) Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigami, T. Org. Lett. 2010, 12, 644. | |
(d) Fuchigami, T.; Sano, M. J. Electroanal. Chem. 1996, 414, 81. | |
28 |
Francke R. ; Little R. D. Chem. Soc. Rev. 2014, 43, 2492.
doi: 10.1039/c3cs60464k |
29 |
Herszman J. D. ; Berger M. ; Waldvogel S. R. Org. Lett. 2019, 21, 7893.
doi: 10.1021/acs.orglett.9b02884 |
30 |
Fujita T. ; Fuchigami T. Tetrahedron Lett. 1996, 37, 4725.
doi: 10.1016/0040-4039(96)00951-3 |
31 | (a) Haupt, J. D.; Berger, M.; Waldvogel, S. R. Org. Lett. 2019, 21, 242. |
(b) Herszman, J. D.; Berger, M.; Waldvogel, S. R. Org. Lett. 2019, 21, 7893. | |
32 | Fuchigami T. ; Tetsu M. ; Tajima T. ; Ishii H. Synlett 2001, 8, 1269. |
33 |
Fuchigami T. ; Mitomo K. ; Ishii H. ; Konno A. J. Electroanal. Chem. 2001, 507, 30.
doi: 10.1016/S0022-0728(01)00440-5 |
34 | (a) Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N. V.; Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600. |
(b) Ohkubo, K.; Mizushima, K.; Iwata, R.; Souma, K.; Suzukib, N.; Fukuzumi, S. Chem. Commun. 2010, 46, 601. | |
35 | (a) Barham, J. P.; Kçnig, B. Angew. Chem. Int. Ed. 2020, 59, 11732. |
(b) Huang, H.; Strater, Z. M.; Rauch, M.; Shee, J.; Sisto, T. J.; Nuckolls, C.; Lambert, T. H. Angew. Chem. Int. Ed. 2019, 58, 13318. | |
(c) Yan, H.; Hou, Z.; Xu, H. Angew. Chem. Int. Ed. 2019, 58, 4592. | |
36 |
Qiu Y. ; Scheremetjew A. ; Finger L. H. ; Ackermann L. Chem. Eur. J. 2020, 26, 3241.
doi: 10.1002/chem.201905774 |
37 |
Margrey A. K. ; Nicewicz D. A. Acc. Chem. Res. 2016, 49, 1997.
doi: 10.1021/acs.accounts.6b00304 |
38 |
Dapperheld S. ; Steckhan E. ; Brinkhaus K. G. ; Esch T. Chem. Ber. 1991, 124, 2557.
doi: 10.1002/cber.19911241127 |
39 | DFT Calculation is done by Gaussian09, in B3LYP/6-31G(d) level for optimization and freqency analysis, and wB97X-D/def2-TZVP level for single point energy: Gaussian 09, Revision D. 01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian, Inc. : Wallingford CT, 2013. |
40 | Sources of EOX data: |
(a) Schmidt, W.; Steckhan, E. Chem. Ber. 1980, 113, 577. | |
(b) Steckhan, E. Organic Syntheses with Electrochemically Regenerable Redox Systems. In Electrochemistry I. Topics in Current Chemistry, Steckhan E. Eds.; Springer: Berlin, Heidelberg, Germany, 1987; p. 142. | |
41 |
Andreeva V. N. ; Grinberga V. A. ; Dedovb A. G. ; Loktevb A. S. ; Mayorovaa; N. A. ; Moiseevb I. I. ; Stepanova A. A. Russ. J. Electrochem. 2013, 49, 996.
doi: 10.1134/S1023193513100030 |
42 |
Rodrigo S. ; Um C. ; Mixdorf J. C. ; GunasekeraD ; Nguyen H. M. ; Luo L. Org. Lett. 2020, 22, 6719.
doi: 10.1021/acs.orglett.0c01906 |
43 |
Khrizanforov M. ; Gryaznova T. ; Sinyashin O. ; Budnikova Y. J. Organomet. Chem. 2012, 718, 101.
doi: 10.1016/j.jorganchem.2012.06.032 |
44 | Dudkina Y. B. ; Mikhaylov D. Y. ; Gryaznova T. V. ; Sinyashin O. G. ; Vicic D. A. ; Budnikova Y. H. Eur. J. Org. Chem. 2012, 11, 2114. |
45 |
Dudkina Y. B. ; Khrizanforov M. N. ; Gryaznova T. V. ; Budnikova Y. H. J. Organomet. Chem. 2014, 751, 301.
doi: 10.1016/j.jorganchem.2013.10.012 |
46 |
Takahira Y. ; Chen M. ; Kawamata Y. ; Mykhailiuka P. ; Nakamura H. ; Peters B. K. ; Reisberg S. H. ; Li C. ; Chen L. ; Hoshikawad T. ; et al Synlett 2019, 30, 1178.
doi: 10.1055/s-0037-1611737 |
[1] | 赵梦龙, 苑岱雷, 叶梓, 房芳, 于月娜. 电化学氧化脱氢交叉偶联构建C—N键——电化学技术在有机化学实验教学中的设计与探索[J]. 大学化学, 2022, 37(5): 2109108-. |
[2] | 李家柱, 洪莹莹, 满英秀, 李英豪, 李庆忠, 何涛. 7-硝基苯并噻吩-2-甲酸乙酯合成实验的优化与改进[J]. 大学化学, 2022, 37(5): 2110030-. |
[3] | 刘占祥, 毛侦军, 邵东贝, 秦敏锐, 蓝国纯, 蔡黄菊, 赵华绒. 研究性与系统性相结合的有机合成实验教学实践[J]. 大学化学, 2022, 37(2): 2109076-. |
[4] | 吴亚, 史俊, 吴丽. 有机合成协同思政教育的课程体系构建探索[J]. 大学化学, 2021, 36(3): 2007077-. |
[5] | 陈连清,韦晓珊,杜艳婷. 有机合成化学“三位一体”混合教学模式探索与实践[J]. 大学化学, 2019, 34(7): 52-59. |
[6] | 刘丹, 贺家豪, 张弛. 有机高价碘化学简介及其应用[J]. 大学化学, 2019, 34(2): 1-16. |
[7] | 陈淼,陈永嘉,丁尔东,戴畅航,房璠,高凯旻,霍佳彤,江晓宇,江子渊,李阳,李智豪,李隗星月,刘子琛,汤天化,王昶,张澍堃,郑辛平,宗家睿,刘硕,李玉新,韩杰. 基于合成方法学研究的有机化学实验教学改革与实践——以苯甲酸乙酯制备为例[J]. 大学化学, 2017, 32(7): 23-27. |
[8] | 马锴果,李田,高珍,李维红. 有机合成的“百宝箱”[J]. 大学化学, 2017, 32(2): 47-55. |
[9] | 吕萍,王彦广. 经典有机反应中的极性反转[J]. 大学化学, 2016, 31(5): 49-59. |
[10] | 李厚金, 朱可佳, 郑赛利, 陈六平. 2-苯基吲哚的合成——推荐一个大学有机化学实验[J]. 大学化学, 2014, 29(5): 75-78. |
[11] | 李厚金, 朱可佳, 陈六平. 黄酮化合物的合成——推荐一个大学有机化学实验[J]. 大学化学, 2013, 28(5): 47-50. |
[12] | 孙礼林. 以常用药物布洛芬为起始原料的 两个大学化学有机合成实验[J]. 大学化学, 2013, 28(1): 44-49. |
[13] | 赵宝东, 于景华, 叶辉, 王涛. 光敏剂六氟磷酸盐的合成——推荐一个应用化学专业的有机化学实验[J]. 大学化学, 2011, 26(5): 67-70. |
|