强电解质稀溶液的依数性公式导出及实验验证
Derivation and Experimental Verification of Colligative Equations of Dilute Strong Electrolyte Solution
Received: 2018-04-30 Accepted: 2018-07-6
Fund supported: | 北京科技大学研究型示范教学项目 |
讨论了强电解质稀溶液的依数性,即凝固点降低、沸点升高和渗透压。以稀溶液的凝固点降低为例,利用Gibbs-Duhem公式,推导了强电解质稀溶液的凝固点降低公式,并利用NaCl水溶液的凝固点降低实验验证了该公式的正确性。
关键词:
Colligative properties of dilute strong electrolyte solution, i.e., freezing point depression, boiling point elevation and osmotic pressure, are discussed. As an example, the freezing point depression equation of dilute strong electrolyte solution is derived with the help of Gibbs-Duhem equation. This equation is verified with the freezing point depression experiments of aqueous sodium chloride solutions.
Keywords:
本文引用格式
陈美婷, 顾聪, 姚喆, 陈飞武, 张恒建, 熊楚强.
CHEN Meiting, GU Cong, YAO Zhe, CHEN Feiwu, ZHANG Hengjian, XIONG Chuqiang.
在物理化学教材中,溶液多组分体系的热力学和电解质溶液分成了独立的两章。稀溶液的依数性在溶液多组分体系的热力学这一章讲述,而在电解质溶液中不再涉及。这样,一个自然的问题就是,非电解质稀溶液的依数性的计算公式是否适应于强电解质稀溶液呢?
为方便起见,下面以凝固点降低为例加以讨论。非电解质稀溶液的凝固点降低公式为:
其中△Tf、Kf和mB分别表示凝固点降低值、凝固点降低常数和溶质的质量摩尔浓度。下标f表示凝固。对非电解质稀溶液,mB为溶质的物质的量除以溶剂的质量。但对强电解质溶液,由于它在溶剂中完全离解,溶质的数量将加倍,如
1 强电解质稀溶液的依数性
假定稀溶液由溶剂A和溶质B组成。在一定的温度T和压力p下,当稀溶液中的溶剂A开始凝固,并达到平衡时,溶液中溶剂A的化学势和纯固体溶剂A的化学势相等,即
式中aq和s分别表示溶液和固体。式(2)中右边的上标“*”表示纯态。这里只讨论溶质和溶剂凝固时分别析出,且不形成固溶体的情况,否则凝固点还可能升高。稀溶液中溶剂的化学势为:
式中的字母l表示纯液体,以便和表示溶液的符号“aq”相区别。R为气体常数。aA为稀溶液中溶剂A的活度,aA = γAxA。γA和xA分别为溶剂的活度系数和物质的量分数。将式(3)代入式(2),两边同时除以T,整理后得到
等压下,式(4)两边对温度求偏导,利用等压时
其中
其中
式(7)中下标B表示物质B。对式(7)微分,得:
将式(8)和等温等压时Gibbs自由能的微分式
其中
γ+和γ−分别为强电解质离解后正离子和负离子的活度系数。将式(3)和式(10)代入到式(9),整理后得:
对稀溶液来说,在一定浓度范围内γB变化不大,dγB ≈ 0。因此,dlnaB ≈ dlnxB。这样,式(12)可进一步写成:
式(13)将强电解质的浓度xB和溶剂的浓度xA联系起来,这样就可以讨论强电解质浓度对凝固点的影响。将式(13)代入到式(5),两边积分,得到:
由于
其中
将式(16)和式(17)代入式(15),最后得到:
通常将式(18)右边分数的值定义为凝固点降低常数Kf。这样式(18)可简写为:
除了凝固点降低外,强电解质稀溶液的沸点升高和渗透压公式也可以同样推导,为避免重复,不再赘述。具体计算公式如下:
其中Kb为沸点升高常数,
2 实验验证
实验步骤等详见文献11,这里只作简单介绍。
2.1 实验装置和试剂
JDF-3F精密电子温差测量仪(精度0.01 ℃)一台。凝固点测定装置如图1所示,包含干燥大试管、搅拌棒、测温探头和冰盐浴。另外还有50 mL滴定管、称量瓶、吸管、分析天平和秒表等。
图1
NaCl (分析纯,摩尔质量为58.5 × 10−3 kg),二次蒸馏水等。
2.2 实验步骤
(1)取干燥大试管一支,用滴定管向其中准确加入30.00 mL二次蒸馏水,将测温探头及搅拌棒插入试管,如图1所示。将冰块小心倒满试管周围,然后向冰块上撒大约40 g的盐,用手稍按压冰盐浴使其与试管紧密接触。
(2)电子温差仪置零。打开电子温差仪的开关,连续均匀地上下搅拌试管中的水,待水温保持稳定或仅有微小变化时,则按下置零键。
(3)纯水凝固点的测定。取出试管,当试管中的固体完全融化且温度升到6 ℃以上时,重新将试管放入冰盐浴中,将冰压紧。连续均匀地上下搅拌试管中的水,并在温度降至1.5 ℃左右时开始连续记录,30 s记录一次温度值,直至温度稳定或仅有微小变化达5 min后停止记录。
(4)三个氯化钠溶液凝固点的测定。
将步骤(3)中的试管拿出冰盐浴,吸出冰盐浴的水。稍稍提起温度计,向试管内加入称量的NaCl,搅拌到完全溶化。本实验中NaCl质量为0.5136 g。待温度升到6 ℃以上时,重新将试管放入冰盐浴中。在温度降至1.5 ℃左右时开始连续记录,30 s记录一次温度值,直至温度稳定或仅有微小变化5 min后停止记录。此溶液记为溶液Ⅰ。
将试管拿出冰盐浴,吸出冰盐浴的水,用滴定管向大试管中准确加入15.00 mL二次蒸馏水稀释。当温度升到6 ℃以上时,重新将试管放入冰盐浴。当温度降至1.5 ℃左右时,开始连续记录,30 s记录一次温度值,直至温度稳定或仅有微小变化,5 min后停止记录。此溶液记为溶液Ⅱ。
再次将试管拿出冰浴,吸出冰盐浴的水,用滴定管向大试管中准确加入15.00 mL二次蒸馏水稀释。当温度升到6 ℃以上时,重新将试管放入冰盐浴。当温度降至1.5 ℃左右时,开始连续记录,30 s记录一次温度值,直至温度稳定或仅有微小变化,5 min后停止记录。此溶液记为溶液Ⅲ。
2.3 实验结果和讨论
图2
图3
表2 三个NaCl溶液的凝固点降低测量结果
NaCl溶液 | T/℃ | △T/K | MNaCl/(g∙mol−1) | 相对误差/% |
Ⅰ | −1.070 | 1.070 | 59.5 | 1.7 |
Ⅱ | −0.708 | 0.708 | 59.9 | 2.4 |
Ⅲ | −0.537 | 0.537 | 59.2 | 1.2 |
T:凝固点;△T:凝固点降低
从表2还可看出,NaCl溶液Ⅲ的误差最小,应该和NaCl溶液Ⅲ的浓度最小有关。溶液越稀,溶液的依数性公式越准确,由式(22)计算出来的NaCl相对分子质量也越接近精确值。
3 结论
稀溶液的依数性是溶液多组分体系的重要物理性质之一。我们以凝固点降低公式为例,利用Gibbs-Duhem公式,推导了强电解质稀溶液的凝固点降低公式。凝固点降低的量和强电解质在溶剂中离解后的离子数量成正比。NaCl溶液的凝固点降低实验验证了这一公式。这一结论对强电解质稀溶液的沸点升高和渗透压也是成立的。我们希望本文的讨论有助于加深读者对Gibbs-Duhem公式和稀溶液依数性的理解。
参考文献
/
〈 |
|
〉 |
