大学化学 >> 2022, Vol. 37 >> Issue (11): 2203015.doi: 10.3866/PKU.DXHX202203015
所属专题: 无机化学课程教学(2022)
自学之友 上一篇 下一篇
游丹1, 蔡殿红2, 程清蓉1,*()
收稿日期:
录用日期:
发布日期:
通讯作者:
作者简介:
Dan You1, Dianhong Cai2, Qingrong Cheng1,*()
Received:
Accepted:
Published:
Contact:
摘要:
水溶液中化学平衡的计算涉及解一元高次方程,在数学上是非常麻烦的事。用起始浓度替代平衡浓度进行近似计算,引起的误差极大。本文阐述了逐步逼近法在水溶液化学平衡计算中的应用条件,预测逼近次数,并提出平衡计算的步骤。最终不利用计算机也能通过几次简单计算使结果准确度达到要求,并通过预测逼近次数减少盲目性。
关键词: 化学平衡计算, 逐步逼近法, 近似计算, 误差, 预测逼近次数
Abstract:
The calculation of chemical equilibrium in aqueous solution involves solving unary quadratic or multiple equations, which is troublesome. The initial concentration is used to substitute the equilibrium concentration for approximate calculation, however, sometimes, the error is large. In this article, the application conditions of the method of progressive approximation in the calculation of chemical equilibrium of aqueous solution are described, the number of approximations is predicted, and the steps of chemical equilibrium calculation in aqueous solution are put forward. This enables the calculation of chemical equilibrium in aqueous solution, especially in the case of unitary higher-order equations, to achieve the desired accuracy through some simple calculations without using computers, and reduce blindness by predicting approximation times.
Key words: Chemical equilibrium calculation, Method of successive approximation, Approximate calculation, Error, Predicted approximation times
游丹, 蔡殿红, 程清蓉. 化学平衡的近似计算[J]. 大学化学, 2022, 37(11): 2203015.
Dan You, Dianhong Cai, Qingrong Cheng. Approximate Calculation of Chemical Equilibrium[J]. University Chemistry, 2022, 37(11): 2203015.
导出引用管理器 EndNote (中文内容)|EndNote (英文内容)| Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://www.dxhx.pku.edu.cn/CN/10.3866/PKU.DXHX202203015
https://www.dxhx.pku.edu.cn/CN/Y2022/V37/I11/2203015
图1
逼近计算结果c(H+)m、逼近次数(m)与准确值c(H+)的关系 c(H+)m和c(H+)单位:mol∙L?1;$ c({\text{H}}^{\text{+}})/{c}^{?}\text{ = }-\frac{c({\text{A}}^{-})/{c}^{?}+{K}_{}^{?}(\text{HA})}{2}\text{ + }\sqrt{\frac{(c({\text{A}}^{-})/{c}^{?}+{K}_{}^{?}(\text{HA}){)}^{2}}{4}+{K}_{}^{?}(\text{HA})\cdot c(\text{HA})/{c}^{?}} $"
表1
甲酸和甲酸钠混合溶液中Er1与逼近次数的关系"
表2
氨水中Ag(NH3)2+、Cu(NH3)42+和Co(NH3)62+离解平衡Er1与逼近次数的关系"
表3
Mg(OH)2在氨和氯化氨混合溶液中达到平衡时Er1与逼近次数关系"
表4
Cu2+和HCN混合溶液中Er1与逼近次数关系"
Cited