大学化学 >> 2015, Vol. 30 >> Issue (1): 1-9.doi: 10.3866/PKU.DXHX20150101

今日化学 上一篇    下一篇

浅谈2014年诺贝尔化学奖:超高分辨率荧光显微成像

孙育杰, 陈轩泽   

  1. 北京大学生物膜与膜工程国家重点实验室 生命科学学院生物动态光学成像中心 北京 100871
  • 发布日期:2015-02-25
  • 通讯作者: 孙育杰 E-mail:sun_yujie@pku.edu.cn
  • 基金资助:

    国家青年千人计划;基金委重大仪器设备研发专项(No.31327901)

Nobel Prize in Chemistry 2014: Super-resolved Fluorescence Microscopy

Sun Yujie, Chen Xuanze   

  1. State Key Laboratory of Biomembrane and Membrane Biotechnology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
  • Published:2015-02-25

摘要:

超分辨显微成像技术是近些年来发展最快、受关注度最高的光学成像技术之一。这类技术突破了光学衍射极限,将显微镜的分辨率从几百纳米提高到几十纳米,为生命科学研究提供了一个强大工具。目前主流的超分辨率显微技术主要基于点扩散函数调制和单分子定位的原理来实现。其主要贡献者也成为2014年诺贝尔化学奖的获得者。本文简要讲述超分辨显微技术的发展历程并对其发展趋势进行展望。

关键词: 光学衍射极限, 超分辨荧光成像, 受激发射损耗, 随机显微重构, 单分子成像

Abstract:

Super-resolution microscopy is probably one of the fastest developed and most eye-catching new optical imaging techniques during the past few years. These group of techniques break the optical diffraction limits and increase the spatial resolution from several hundred nanometers to tens of nanometers, providing a powerful tool for life sciences. The mainstream super-resolution techniques are based either on point spread function engineering or single molecule localization. The major contributors were awarded by the 2014 Nobel Chemistry prize. This review provides a brief history of the development of super-resolution techniques and their working mechanisms. An out-look is also proposed for the future of super-resolution imaging.

Key words: Optical diffraction limit, Super-resolution fluorescence imaging, Stimulated emission depletion(STED), Stochastic reconstruction microscopy, Single molecule imaging