1 |
De Grey A. D. N. J. DNA Cell Biol. 2002, 21 (4), 251.
doi: 10.1089/104454902753759672
|
2 |
Richard, L. M. The 100 Most Important Chemical Compounds: a Reference Guide, 1st ed.; Greenwood Press: Connecticut, USA, 2007; pp. 144-146.
|
3 |
Koppenol W. H. ; Sies H. Nature 2018, 559 (7713), 181.
|
4 |
Liang M. C. ; Hartman H. ; Kopp R. E. ; Kirschvink J. L. ; Yung Y. L. P. Natl. Acad. Sci. USA 2006, 103 (50), 18896.
doi: 10.1073/pnas.0608839103
|
5 |
Mostofa, K. M. G.; Yoshioka, T.; Mottaleb, A.; Vione, D. Photobiogeochemistry of Organic Matter, Principles and Practices in Water Environments, 1st ed.; Springer: Heidelberg, Germany, 2013; pp. 139-207.
|
6 |
Pesterfield L. J. Chem. Educ. 2009, 86 (10), 1182.
doi: 10.1021/ed086p1182
|
7 |
Busing W. R. ; Levy H. A. J. Chem. Phys. 1965, 42 (9), 3054.
doi: 10.1063/1.1696379
|
8 |
Giguere P. A. J. Chem. Educ. 1983, 60 (5), 399.
doi: 10.1021/ed060p399
|
9 |
Talsi E. P. ; Bryliakov K. P. Coordin. Chem. Rev. 2012, 256, 1418.
doi: 10.1016/j.ccr.2012.04.005
|
10 |
Burek B. O. ; Bormann S. ; Hollmann F. ; Bloh J. Z. ; Holtmann D. Green Chem. 2019, 21 (12), 3232.
doi: 10.1039/C9GC00633H
|
11 |
Ranganathan S. ; Sieber V. Catalysts 2018, 8 (9), 379.
doi: 10.3390/catal8090379
|
12 |
Campos-Martin J. M. ; Blanco-Brieva G. ; Fierro J. L. G. Angew. Chem. Int. Edit. 2006, 45 (42), 6962.
doi: 10.1002/anie.200503779
|
13 |
胡长诚. 化学推进剂与高分子材料, 2003, 19 (1), 14.
|
14 |
Tomita O. ; Otsubo T. ; Higashi M. ; Ohtani B. ; Abe R. ACS Catal. 2016, 6 (2), 1134.
doi: 10.1021/acscatal.5b01850
|
15 |
Kimura M. ; Yamamoto M. ; Nagai A. Inorg. Chim. Acta 1986, 117 (2), 169.
doi: 10.1016/S0020-1693(00)82194-5
|
16 |
Perry S. C. ; Pangotra D. ; Vieira L. ; Csepei L. I. ; Sieber V. ; Wang L. ; Ponce de Leon C. ; Walsh F. C. Nat. Rev. Chem. 2019, 3 (7), 442.
doi: 10.1038/s41570-019-0110-6
|
17 |
Shiraishi Y. ; Kanazawa S. ; Kofuji Y. ; Sakamoto H. ; Ichikawa S. ; Tanaka S. ; Hirai T. Angew. Chem. Int. Edit. 2014, 53 (49), 13454.
doi: 10.1002/anie.201407938
|
18 |
Liu J. ; Zou Y. ; Jin B. ; Zhang K. ; Park J. H. ACS Energy Lett. 2019, 4 (12), 3018.
doi: 10.1021/acsenergylett.9b02199
|
19 |
Ranganathan S. ; Sieber V. Catalysts 2018, 8 (9), 379.
doi: 10.3390/catal8090379
|
20 |
Freakley S. J. ; He Q. ; Harrhy J. H. ; Lu L. ; Crole D. A. ; Morgan D. J. ; Ntainjua E. N. ; Edwards J. K. ; Carley A. F. ; Borisevich A. Y. ;et al Science 2016, 351 (6276), 965.
doi: 10.1126/science.aad5705
|
21 |
Xia C. ; Xia Y. ; Zhu P ; Fan L. ; Wang H. T. Science 2019, 366(6462),226.
doi: 10.1126/science.aay1844
|
22 |
Zhang M. F. ; Hao J. C. ; Neyman A. ; Wang Y. F. ; Weinstock I. A. Inorg. Chem. 2017, 56 (5), 2400.
doi: 10.1021/acs.inorgchem.6b02167
|
23 |
Kim H. J. J. Microbiol. Biotechn. 2014, 24 (11), 1455.
doi: 10.4014/jmb.1407.07072
|
24 |
Cerny M. ; Habanova H. ; Berka M. ; Luklova M. ; Brzobohaty B. Int. J. Mol. Sci. 2018, 19 (9), 2812.
doi: 10.3390/ijms19092812
|
25 |
Lennicke C. ; Rahn J. ; Lichtenfels R. ; Wessjohann L. A. ; Seliger B. Cell Commun. Signal. 2015, 13 (1), 39.
doi: 10.1186/s12964-015-0118-6
|
26 |
Filomeni G. ; De Zio D. ; Cecconi F. Cell Death Differ. 2015, 22 (3), 377.
doi: 10.1038/cdd.2014.150
|
27 |
Wang Y. ; Branicky R. ; Noe A. ; Hekimi S. J. Cell Biol. 2018, 217 (6), 1915.
doi: 10.1083/jcb.201708007
|
28 |
Chaiswing L. ; St. Clair W. H. ; St. Clair D. K. Antioxid. Redox Sign. 2018, 29 (13), 1237.
doi: 10.1089/ars.2017.7485
|
29 |
Weinberg F. ; Ramnath N. ; Nagrath D. Cancer-Am. Cancer Soc. 2019, 11 (8), 1191.
|
30 |
Glasauer A. ; Chandel N. S. Biochem. Pharmacol. 2014, 92 (1), 90.
|
31 |
Rajendran P. ; Nandakumar N. ; Rengarajan T. ; Palaniswami R. ; Gnanadhas E. N. ; Lakshminarasaiah U. ; Gopas J. ; Nishigaki I. Clin. Chim. Acta 2014, 436, 332.
doi: 10.1016/j.cca.2014.06.004
|
32 |
Fransen M. ; Lismont C. Antioxid. Redox Sign. 2019, 30 (1), 95.
doi: 10.1089/ars.2018.7515
|
33 |
常青; 江国栋; 唐和清; 崔龙哲; 吕康乐; 吴来燕. 实验室科学, 2014, 17 (2), 27.
|
34 |
Chen X. Q. ; Wang F. ; Hyun J. Y. ; Wei T. W. ; Qiang J. ; Ren X. T. ; Shin I. ; Yoon J. Chem. Soc. Rev. 2016, 45 (10), 2976.
doi: 10.1039/C6CS00192K
|
35 |
Zhang W. ; Liu W. ; Li P. ; Huang F. ; Wang H. ; Tang B. Anal. Chem. 2015, 87 (19), 9825.
doi: 10.1021/acs.analchem.5b02194
|
36 |
Cai L. L. ; Hou B. J. ; Shang Y. Y. ; Xu L. ; Zhou B. ; Jiang X. N. ; Jiang X. Q. Chem. Phys. Lett. 2019, 736, 136797.
doi: 10.1016/j.cplett.2019.136797
|
37 |
Chen S. H. ; Yuan R. ; Chai Y. Q. ; Yin B. ; Xu Y. Electroanal. 2008, 20 (19), 2141.
doi: 10.1002/elan.200804303
|
38 |
Zhang J. ; Gao L. Mater. Lett. 2007, 61 (17), 3571.
doi: 10.1016/j.matlet.2006.11.138
|
39 |
刘杰; 赵振廷; 史健芳; 张文栋; 胡杰. 材料导报, 2016, 30 (24), 11.
|
40 |
Spoof L. ; Jaakkola S. ; Vazic T. ; Häggqvist K. ; Kirkkala T. ; Ventelä A. M. ; Kirkkala T. ; Svircev Z. ; Meriluoto J. Environ. Sci. Pollut. R. 2020, 27 (8), 8638.
doi: 10.1007/s11356-019-07476-x
|
41 |
Zanelli M. ; Ragazzi M. ; De Marco L. Br. J. Clin. Pharmacol. 2017, 83 (2), 427.
doi: 10.1111/bcp.13100
|